Lesson 6 Worksheet

1. A base ball is thrown with an initial speed of 20 m/s at an angle of 10° above the horizontal. Determine:

a. How long it is in the air for. (t = 0.71s)

b. What its maximum height will be. (0.61 m)

c. How long the range (horizontal displacement) is. (14 m)

a. $v_i = 20m/s$ $v_x = 20m/scos10^\circ = 19.7m/s$ $v_{iy} = (20m/s)sin10^\circ = 3.47m/s$ $v_{fy} = -3.47m/s$ $a_y = -9.80m/s^2$ t = ?	$a_{y} = \frac{v_{fy} - v_{iy}}{t}$ $t = \frac{v_{fy} - v_{iy}}{a_{y}}$ $t = \frac{(-3.47m/s) - (3.47m/s)}{(-9.80m/s^{2})} = 0.71s$
b. $v_{iy} = 3.47 \text{m/s}$ $v_{fy} = 0 \text{m/s}$ $a_y = -9.80 \text{m/s}^2$ $d_y = ?$	$v_{f}^{2} = v_{i}^{2} + 2ad$ $v_{f}^{2} - v_{i}^{2} = 2ad$ $\frac{v_{f}^{2} - v_{i}^{2}}{2a} = d$ $d = \frac{v_{f}^{2} - v_{i}^{2}}{2a} = \frac{(0m/s)^{2} - (3.47m/s)^{2}}{2(-9.80m/s^{2})}$ $d_{y} = 0.61m$
c. $v_{ix} = v_{fx} = v_x = 19.7 \text{m/s}$ t = 0.71 s $d_x = ?$	$d_x = \left(\frac{v_{fx} + v_{ix}}{2}\right)t = \left(\frac{19.7m/s + 19.7m/s}{2}\right)(0.71s)$ $d_x = 14m$

2. An artillery shell is launched at an unknown angle. It strikes the ground (at the height that it was fired) 250 m away and has a maximum height of 100 m. Determine:

- a. The initial vertical velocity. (44.3 m/s)
- b. The time the shell is in the air. (9.04 s)
- c. The horizontal velocity. (27.7 m/s)
- d. The initial speed. (52.2 m/s)
- e. The angle the projectile was launched at. (58.0°)
- f. What is the velocity 2.00 seconds after launch?
- g. What is the velocity on impact?

a. Let's start by writing down all the information	$v_{fy}^{2} = v_{iy}^{2} + 2a_{y}d_{ymax}$
we can about the half way point of the	$y^{2} - 2a d = y^{2}$
projectile's flight.	$v_{fy} = 2u_y u_{ymax} - v_{iy}$
$d_{vmax} = 100m$	$v_{iy}^{2} = v_{fy}^{2} - 2a_{y}d_{y\max}$
$a_v = -9.80 \text{m/s}^2$	$\int y^{2} - y = \int y^{2} - 2a d$
v _{iv} = ?	$\sqrt{v_{iy}} - v_{iy} - \sqrt{v_{fy}} - 2a_y a_{y\max}$
v _{fy} = 0m/s	$v_{iy} = \sqrt{(0m/s)^2 - 2(-9.80m/s^2)(100m)}$
	$v_{iy} = 44.3m/s$
b.	$v_{c} - v_{c}$
	$a_y = \frac{f_{yy} - f_{yy}}{f}$
v _{iy} = 44.3m/s	v = v = 44.2 m/c = 44.2 m/c
$v_{fy} = -44.3 \text{m/s}$	$t = \frac{v_{fy} - v_{iy}}{v_{fy}} = \frac{-44.3m/s - 44.3m/s}{0.000} = 9.04s$
t = ?	$a_y = -9.80m/s^2$
С.	$v_x = \frac{d_x}{t} = \frac{250m}{9.04s} = 27.7m/s$
t = 9.04s	
d _x = 250m	
$\mathbf{v}_{ix} = \mathbf{v}_{fx} = \mathbf{v}_x = ?$	
d.	$v_i^2 = v_{ix}^2 + v_{iy}^2$
$v_{ix} = 27.7 m/s$	$v_i = \sqrt{v_{ix}^2 + v_{iy}^2}$
v _{iy} = 44.3m/s	$v_i = \sqrt{(27.7m/s)^2 + (44.3m/s)^2} = 52.2m/s$
e. Draw a triangle with the vectors v_{ix} , v_{iy} , and v_i	opp V = 44.3m/s
and then use sin, cos, or tan to solve. I'll use tan.	$\tan \theta = \frac{opp}{adj} = \frac{iy}{v_{ix}} = \frac{110m/s}{27.7m/s}$
	$\tan \theta = 1.60$
	\tan^{-1} (an θ) = \tan^{-1} (.60)
	$\theta = 58.0^{\circ}$
*** For some reason the computer messed up	
the inverse tan part. All I did Was take the inverse tan of both sides, so inverse tan of $1.60 - 59.00$	
$1.00 = 58.0^{\circ}$	

f. $v_{iy} = 44.3 \text{m/s}$ $v_{fy} = ?$ $a_y = -9.80 \text{m/s}^2$ t = 2.00 s	$a_{y} = \frac{v_{fy} - v_{iy}}{t}$ $a_{y}t = v_{fy} - v_{iy}$ $a_{y}t + v_{iy} = v_{fy}$ $v_{fy} = a_{y}t + v_{iy}$ $v_{fy} = (-9.80m/s^{2})(2.00s) + 44.3m/s = 24.7m/s$
$v_x = 27.7 \text{m/s}$ (it never changes)	
So the velocity when t = 2.00s is: $v_x = 27.7 \text{m/s}$ $v_y = 24.7 \text{m/s}$	
g. We could do a whole bunch of calculations, but why bother? The easiest way to answer this question is to understand that v_x will not change, and v_{fy} is the opposite of v_{iy} . $v_{fx} = 27.7 \text{m/s}$ $v_{fy} = -44.3 \text{m/s}$	